

Hydropower Plants: Generating and Pumping Units Solved Problems: Series 5

Reversible Pump-turbine power plant

- 1) What is the role of the draft tube in a Francis-type reversible pump-turbine?
- 2) What are the advantages of having a variable speed unit?
- 3) In Figure 1, identify the components of the reversible pump-turbine listed in Table 1.

Table 1: Components to identify

1	Impeller
2	Guide vanes
3	Blade
4	Draft tube cone
5	Shaft
6	Stay vanes
7	Spiral case

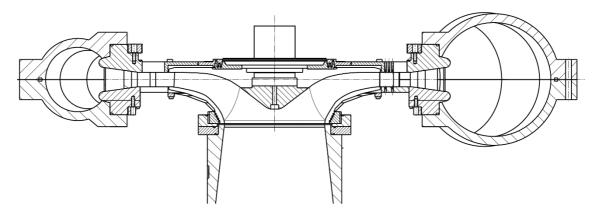


Figure 1: Cutview of the reversible pump-turbine

In the following questions, we are interested in the best efficiency point (BEP) of the reversible pump-turbine. The corresponding parameters of the power plant at BEP are given in Table 2.

Table 2: Parameters of the power plant at BEP

Variable	Unit	Value
Q	$(m^3 \cdot s^{-1})$	235
$\eta_{_e}$	(-)	0.95
$Z_{\scriptscriptstyle B}$	(m)	750
$Z_{ar{B}}$	(m)	573
N	(min ⁻¹)	128.6
$D_{\mathrm{l}e}$	(m)	7.4
$D_{\overline{1}e}$	(m)	5.4
В	(m)	1

27.11.2024 EPFL Page 1/2

Variable	Unit	Value
ρ	$(kg \cdot m^{-3})$	1000
g	$(m \cdot s^{-2})$	9.81

- 4) Compute the potential hydraulic energy of the hydropower plant.
- 5) For the rated discharge, the specific energy losses in the complete hydraulic circuit are estimated to $gH_r = 9.5 \text{ J}\cdot\text{kg}^{-1}$. Compute the available specific energy E.
- 6) Compute the hydraulic power P_h .
- 7) Neglecting the mechanical losses and introducing the energy efficiency η_e , derive a relation between the final supplied power P and the hydraulic power P_h .
- 8) Determine the final supplied power P and the torque T.
- 9) Compute the external runner rotating velocity at the runner inlet and outlet, respectively U_{1e} and $U_{\overline{1}e}$.
- 10) Compute the meridional component of the absolute flow velocity at the runner inlet and outlet, respectively Cm_{1e} and $Cm_{\overline{1}e}$.
- 11) Compute the transformed specific energy E_t .
- 12) Compute the peripheral component of the absolute flow velocity at the runner inlet and outlet, respectively $^{C}u_{1e}$ and $^{C}u_{\overline{1}e}$.
- 13) Compute the absolute and relative flow angles at the runner inlet, α_{1e} and β_{1e} respectively, and sketch qualitatively the velocity triangle at the runner inlet.
- 14) Now sketch qualitatively the velocity triangle at the runner outlet at the BEP.

For the last part of this exercise, we want to study the pump-turbine at off-design conditions.

- 15) The operator wants to operate the machine at off-design conditions with a lower discharge to adjust the output power of the machine. How can he do that?
- 16) The discharge value is now lower than the value at the Best Efficiency Point. Illustrate qualitatively the new situation with the velocity triangle at the runner outlet.
- 17) What phenomenon can occur in the draft tube in this case?

27.11.2024 EPFL Page 2/2